Generation of higher-order squeezing in multiphoton micromaser
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Abstract

The generation of steady state higher-order squeezing in the sense of Hong and Mandel
[Phys. Rev. Lett. 54, 323(1985); Phys. Rev. A32, 974(1985)] and also of Hillery [Phys.
Rev. A36, 3796(1987)] in a multiphoton micromaser is studied. The results show that
the cotangent state which is generated by the coherent trapping scheme in 2 multiphoton
micromaser can exhibit not only second-order squeezing but also fourth-order and squared
field amplitude squeezings. The influence of the cavity loss on the squeegings is investigated.

1 Introduction

The one-atom micromaser which has been developed in recent years[1-3] is an unique device
in experimentally studying the interaction of a single atom with the quantized electromagnetic
field in a cavity. It has theoretically or experimentally been shown that the field with nonclassical
properties such as sub-poissonian photon distribution[4-5] and second quadrature squeezing[6-8]
can be generated in a one-photon micromaser. The key physical process in the micromaser is
the interaction of a two-level atom with a single-mode quantized electromagnetic field inside the
cavity. As usual, the Jaynes- Cummings model[9] is employed to describe the process and the
corresponding Hamiltonian is written as

B = kw8, + hwita + ho(aS_ +a*8,) (1)

where $, = He >< el-|g >< g)), S_=le>< gland §; = |g >< ¢|. In the above, |g > and |e >
denote the lower and upper states of the atom; +3%w, are energies of the atomic levels; 4* and
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& creation and annihilation operators of photons with frequency w; &g is the atom-field coupling
constant. It is seen in (1) that at a time only one photon is exchanged between the atom and
the field while the transition of the atom from one level to another takes place. So, a micromaser
which is built on the basis of (1) is called one-photon micromaser. The generalization of (1) is

B = hupS, + hwi*a + hg(a"4_ +™5,) (2)

where m is the photon multiple and other symbols have the same meanings asin (1). The difference
of (2) from (1) is that m photons are allowed to be emitted or absorbed in the transition of the
atom. A number of theoretical analyses have shown that time-dependent squeezing effects can be
generated in the interaction described by (2)[10-13]. A micromaser which is built on the basis of
(2) is called multiphoton micromaser(m > 2). The purpose of this paper is to investigate higher
order squeezing properties of cotangent state produced by the coherent trapping approach(14] in
a multiphoton micromaser.

2 Higher-order squeezing properties of cotangent state

Suppose that at time t the state vector of the atom-field system is

Ny
9¢) >= Y Saln > &(afe > +6lg >) (3)

n=Ng4

in which the field is in the superposition Ef;,, ,Saln > and the atom in a coherent state ofe >
+Blg > . While the atom is flying inside the cavity, the state vector of the atom-field coupling
system is evolving in time according to the time-dependent Schrodinger equation with (2). When
the atom exits out of the cavity at time ' = f + 7 the atom-field coupling system gets into the
state

¥t+7)> = exp[—i(w.;..Sk'z + wé* )]

Ny
X {z Sula cos(v/(n + m)!/nlgr)in >

n=N,
- iBsin(y/n!/(n = m)lgr)in — m>Jle >
+ z Sa[B cos(y/n!/(n = m)lgT)|n >

n=Ny

- asin(y/(n + m)l/nlgr)n + m >]jg >}. (4)
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If requiring that except the exponential factor exp[—i(wpS; +wd*a)r] induced by huwoS, + hwita
during the period 7 the whole system completely returns to the initial state (3) after the atom
left out of the cavity, i.e., expli(woS; +wi*a)r)|¥(t + r) >= |¥(t) >, and making the interaction
time 7 fulfill the conditions

\/NJV(Nd_m)'gT =gqm 9= 0,2,4,---, (5)
V(Ne +m)l/Ngr =pr,  p=13,5, (6)
we can write (4) as
A Ny
[¥(t + 7) >= exp[—i(woS; + wiTa)7] Z Saln > &(Blg > —ale >) (7)
n=Ng

where S, are determined by the recurrence relation

Sn = —i% cot(% n!/(n - m)igT)Sp-m (8)
with n = N;j+m, Ny+2m, -, N,. In (7), except the phase factor exp(—iwrd* ), the field returns
to the initial state Ef; Ny S.jn > and the magnitudes of the atomic level occupation probability
amplitudes for the lower and upper states are same as in the initial state ale > +8lg > but the
relative phase of o to 5 changes 7. Therefore, We can conclude that if the field is pumped into
the state Yoy . Snln > from an initial state it will no longer be affected by the succeeding atoms
which are initially in the coherent state ale > +8lg > . In this sense, we say that the state
Zf;‘ ¥, Snln > i steady. Since the relation (8) is the cotangent function the corresponding state
of the field is named the cotangent state[14].

To investigate squeezing properties of the cotangent state, we introduce the two slowly varying
quadrature components of the field amphitude
dy = %(&em +ate™), dy= L

25(

Ge™t - ate™™"). (9)

In an arbitrary state of the field, the N¢th-order moment of fluctuation of the field in d(i=1,2)is

: . N1 .
A >=< (A >+ - < GN-2.
<(Ad)" >=<{Ad)" > (N-2)38<(M‘) >
, N | N : (N -1t
ngz- <: (Ad) D>+t oN (10)
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where Ad; = di~ < d; > and <: (Ad)* :> (n = N,N = 2,.--,2) is the nth-order moment of
the d;’s mean squared fluctuation in the normal order. For a coherent state of the field, one has
< (Ad)Y >= (N —1)!t/2¥. When the Nth-order moment of the mean squared fluctuation of d;
in a state is smaller than in a coherent state, that is, < (Ad;)¥ >< (N — 1)!/2", we say that the
state is a Nth-order squeezed state in the d;’s component. Hong and Mandel[15] have shown that
the Nth-order squeezed state with an even N is nonclassical.

We may also define the two quadrature operators of the square of the field amplitude

A | P : . | 42 i
Y, = E(agezwt_l_&we-z:ut); Y‘.‘.= E(azemwt_a-nc 2 t)_ (11)

It is easily shown that ¥; and ¥; fulfill the commutator v, Yfg] =i(2N +1), where N = &*é. The
uncertainty relation for their variances is < (AY;)* >< (AY;)’ >>< N + 7 >*. For a coherent
state of the field, the equality holds and we have < (AY;)? >=< (AV3)? >=< N + s> I
either < (AY})? > or < (AY2)? > is less than < N + 3 > in a state of the field, the state is
called a squared amplitude squeezed state. Hillery[16) has shown that this squeezed state is also

nonclassical.
For convenience, we will in the following discussions employ the iwo quantities

)2

DM = ——
<N+i

< (AJ;)” > < (AY;
= T T

, ; @-= -1, (i=12) (12)

>
>
to measure the squeezing degree. When DSN) < 0 or Q; < 0 the squeezings appear according to
the above definition for squeezing.

Squeezing properties of the cotangent state with various photon multiples m have numerically
been investigated. In our calculations the relative phase of the upper level probability amplitude o
to the lower level one f is chosen #/2. We have found that the pronounced second- and fourth-order
squeezings appear only for m = 1. In Figs. 1, D?) and Dgﬁ of the cotangent state with m = 1 are
depicted against the ratio of o to 8. It is observed in these figures that the strongest squeezing
effect can be reached for a given N, by a proper choice of a/8. For example, D?) = —~0.91 can be
acquired for N, = 40 with a/f = 3.2. This corresponds to the initial state of the atoms in which
the occupation probabilities for the upper and lower levels are 0.91 and 0.09, respectively. We also
notice that the fourth-order squeesing appears only in the regions of the second one. It means
that the present fourth-order squeesing is not intrinsic[10] and is induced from the second one. In
Figs. 2, @, of the cotangent state with m = 1 and m = 2 versus a/f is shown. It is observed
in these figures that for a given N, there exists the value of a/f for the optimal squeezing. For
example, Q, can reach -0.54 and -0.62 for m = 1 and m = 2, respectively, when /8 = 2.5 and
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Figs. 1: D{®)(solid line) and D{*’ (dashed line) versus o/ with N;=0and m = 1.
(a)N, = 10;(b)N, = 40.
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Figs. 2: Q; versus o/B with N¢ = 0, m = 1(solid line) and m = 2(dashed line).
(a)N, = 10;(b) N, = 40.



N, = 40. It means that these squeezing degrees can be acquired when the atoms are initially in
the coherent state with the level occupation probabilities o = 0.86 and 42 = 0.14. We also notice
that the optimal squeesing in the two photon case is always stronger than in the one photon case
for a given N,. In our calculations we find that the squared amplitude squeezing disappears when
m > 2. It means that this squeezing can be realized only in one-and two-photon micromasers by
the coherent trapping approach.

3 Dynamic process of generation of steady state squeez-

*

g

We now turn our attention to dynamically generating the squeezing effects discussed above.
Suppose that each of the atoms entering the cavity is initially in the coherent state aje > +8|g >,
and the flight time of the atoms inside the cavity is . If at time ¢; the density matrix of the field
is S1(t;), at time t; + 7 the atom will leave out of the cavity and density matrix elements of the
field can be written as

ﬁg,)‘(t; + 7) = expli(n - n')wr]

X{[Icnv]2 cos(y/(n' + m)!/n"lg7) cos(y/(n + m)!/nlgr)

+|87 cos(y/n!](n' — m)lgr) cos(+/nl](n — m)igr)}5 (t:)
+182 sin(y/{v" + m)tfn'igr) sin(y/(n + mrIgr)EL it
+of? sin (/w1 (' = m)lgr) sin(/n!f(n — m)lgr)5S) pp_m(ti)

Pu!—mn—m
+iaf cos(/(n' + m)!/nlgr) sin(y/(n + m)}/nlgr)tl,.(4)
~ia* fein(v/{w' + m)!/nigr) cos(y/(n + m)/nlgr)ill) . (8)
+ia*B cos(/m(w' = m)lgr) sin(v/nl/(n — m)lgr))_ (&)
—iaf* sin(/n'}](n' — m)lgr) cos(y/nl/(n — m)igr)ad) _ (t)}). (13)
If the next atom enters the cavity at time {;,,, there will be no atom inside the cavity within the
time interval ¢; + 7 <t < t;4;. We suppose that during that interval the field relaxes at the rate

~ to the thermal reservoir with the mean photon number n;. This process is described by the
master equation[5]

doPit ,.
Pdt( ) %(nb + l)(2&ﬁ(”(z')&+ - sta ’g(f)(t) - ﬁ(f)(t)&"&)

+-}nb(2a+.5‘f (t)a - aa*p () - fD)aE), ti+7<t <t (14)
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On the basis of (13)-(14), we can study the dynamic evolution of the field while the atoms one by
one pass through the cavity.

In the present calculations, we choose that the field is initially in the vacuum, and make the
relative phase of @ to f being 7/2 and 7 satisfying the conditions (5)-(6) with g =0 and p= 1.
Meanwhile, we take ¥ = 5571, g = 10kHz which are consistent with the parameters used in the
current micromaser[4]. If the injection of the atoms is regular, i.., the time distances between the
adjacent atoms are same. In this case, the relaxation time of the field to the reservior is equal to
1/R — 7 where R is the atomic flux. In Figs.3-6, for the single photon case, the evoluiion of D"
and Q, against the number of the atoms which have left out of the cavity is shown with various
values of the atomic flux R. In these figures, the dashed line represents the result with v = 0.
According to the conditions for the present calcualtions, the steady state with y = 0 must be the
cotangent state. It is observed that when R is small the field has not the second- and fourth-
order squeesing properties since the steady state resuis from the balance between the gain and
the loss. As R increases, the gain brought by the atoms will overpass the cavity loss the steady
state will arise from the coherent trapping because of the condition (6). Then the steady state
exhibits the squeezing behaviour as shown in the figures. We also notice that when R is adequate
large D“) and Q; of the steady state are very close to the values of the cotangent state with the

same parameters.
In Figs.7 and 8, for the two-photon case, the evolution of Q; against the number of the atoms

is depicted. It is observed that the evolution behaviour is similar to shown in Figs. 5 and 6, and
the squeezing becomes deeper than in the one photon case with the same value of R.

4 Conclusion

We have shown that the cotangent state produced by the coherent trapping scheme in a one-
photon micromaser can exhibit steady state fourth-order as well as squared amplitude squeezings.
The last squeezing can also appear in the cotangent state produced in a degenerate two-photon
‘micromaser. The cotangent state of the field with these squeezing effects can be reached from the
cavity vacuum by the atomic coberent pumping. The influence of the cavity loss on the squeezing
effects has been investigated. The results show that when the flux of the atoms entering the cavity
is moderately large the squeezings are not essentially affected by the cavity loss.
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